热量和熵变的计算公式
问题描述
- 精选答案
-
计算公式1、克劳修斯首次从宏观角度提出熵概念,其计算公式为:S=Q/T,(计算熵差时,式中应为△Q)2、波尔兹曼又从微观角度提出熵概念,公式为:S=klnΩ,Ω是微观状态数,通常又把S当作描述混乱成度的量。
3、笔者针对Ω不易理解、使用不便的现状,研究认为Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2,Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T'/T)+kln(V'/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,有利于教和学,可称为第三代熵公式。上述三代熵公式,使用的物理量从形式上看具有"直观→抽象→直观"的特点,我们认为这不是概念游戏,是对熵概念认识的一次飞跃。拓展资料熵定律是科学定律之最,这是爱因斯坦的观点。我们知道能源与材料、信息一样,是物质世界的三个基本要素之一,而在物理定律中,能量守恒定律是最重要的定律,它表明了各种形式的能量在相互转换时,总是不生不灭保持平衡的。熵的概念最早起源于物理学,用于度量一个热力学系统的无序程度。热力学第二定律,又称"熵增定律",表明了在自然过程中,一个孤立系统的总混乱度(即"熵")不会减小。详细内容最高定律在等势面上,熵增原理反映了非热能与热能之间的转换具有方向性,即非热能转变为热能效率可以100%,而热能转变成非热能时效率则小于100%(转换效率与温差成正比),这种规律制约着自然界能源的演变方向,对人类生产、生活影响巨大;在重力场中,热流方向由体系的势焓(势能+焓)差决定,即热量自动地从高势焓区传导至低势焓区,当出现高势焓区低温和低势焓区高温时,热量自动地从低温区传导至高温区,且不需付出其它代价,即绝对熵减过程。显然熵所描述的能量转化规律比能量守恒定律更重要,通俗地讲:熵定律是"老板",决定着企业的发展方向,而能量守恒定律是"出纳",负责收支平衡,所以说熵定律是自然界的最高定律。分熵的特点熵概念源于卡诺热机循环效率的研究,是以热温商的形式而问世的,当计算某体系发生状态变化所引起的熵变总离不开两点,一是可逆过程;二是热量的得失,故总熵概念摆脱不了热温商这个原始外衣。当用状态数来认识熵的本质时,我们通过研究发现,理想气体体系的总微观状态数受宏观的体积、温度参数的控制,进而得到体系的总熵等于体积熵与温度熵之和(见有关文章),用分熵概念考察体系的熵变化,不必设计什么可逆路径,概念直观、计算方便(已被部分专家认可),因而有利于教和学。熵流熵流是普里戈津在研究热力学开放系统时首次提出的概念(普里戈津是比利时科学家,因对热力学理论有所发展,获得1977年诺贝尔化学奖),普氏的熵流概念是指系统与外界交换的物质流及能量流我们认为这个定义不太精辟,这应从熵的本质来认识它,不错物质流一定是熵的载体,而能量流则不一定,能量可分热能和非热能[如电能、机械能、光能(不是热辐射)],当某绝热系统与外界交换非热能(发生可逆变化)时,如通电导线(超导材料)经过绝热系统内,对体系内熵没有影响,准确地说能量流中只有热能流(含热辐射)能引人熵流(对非绝热系统)。对于实际情形,非热能作用于系统发生的多是不可逆过程,会有热效应产生,这时系统出现熵增加,这只能叫(有原因的)熵产生,而不能叫熵流的流入,因能量流不等于熵流,所以不论么形式的非热能流都不能叫熵流,更不能笼统地把能量流称为熵流。
- 其他回答
-
熵变(蒸发熵、熔化熵、升华熵)的计算为:AfHApS=:T式中ApH-相变热,a和B代表两种相态。由于熔化、升华、蒸发过程均为吸热过程,即相变热为正值,所以熔化、升华、蒸发过程均为熵增加过程。
对于化学反应而言,若反应物和产物都处于标准状态下,则反应过程的熵变,即为该反应的标准熵变。当反应进度为单位反应进度时,反应的标准熵变为该反应的标准摩尔熵变,以△rSm表示。
- 其他回答
-
熵变
1. 熵:体系混乱度(或无序度)的量度。S 表示熵
2. 热力学第三定律:对于纯物质的晶体,在热力学零度时,熵为零。
3. 标准熵:1 mol物质在标准状态下所计算出的 标准熵值,用ST q表示,单位: J•mol-1 •K-1
4. 熵的规律:
(1) 同一物质,气态熵大于液态熵,液态熵大于固态熵; ST q(g) > ST q(l) > ST q(s)
S q H2O (g) > H2O (l) > H2O (s)
(2) 相同原子组成的分子中,分子中原子数目越多,熵值越大;
S q O2 (g) < S q O3 (g)
S q NO (g) < S q NO2 (g) < S q N2O4 (g)
S q CH2=CH2 (g) < S q CH3-CH3 (g)
(3) 相同元素的原子组成的分子中,分子量越大,熵值越大;
S q CH3Cl(g) < S q CH2Cl2 (g) < S q CHCl3(g)
(4) 同一类物质,摩尔质量越大,结构越复杂,熵值越大;
S qCuSO4(s) < S qCuSO4•H2O(s) < SqCuSO4•3H2O(s) < SqCuSO4•5H2O (s)
S qF2(g) < S qCl2(g) < S qBr2(g) < SqI2 (g)
(5) 固体或液体溶于水时,熵值增大,气体溶于水时,熵值减少;
5. 反应熵变的计算公式
一般地,对于反应:m A + n B =x C + y D
DrSmq = åSq,(生成物) - åSq,(反应物)
= [x Sq,C + y Sq,D] – [m Sq,A + n Sq,B]